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1 Introduction
In this article, we consider shape optimization problems that in the most general form can be stated as fol-
lows: Given a cost functional F, and a class of admissible domainsA, solve the minimization problem

min
A∈A

F(A). (1.1)

These types of problems have extensively been considered, and they arise in many fields and in many
applications. The literature is very wide, from the classical cases of isoperimetrical problems to the most
recent applications including elasticity and spectral optimization. Only to mention some references, we refer
the reader to the books of Allaire [2], Bucur and Buttazzo [7], Henrot [19], Pironneau [27] and Sokołowski
and Zolésio [34], where a huge amount of shape optimization problems are tackled.

In most of the existing references, the cost functional F is given in terms of a function uA which is the
solution of a state equation to be solved on A of the form

F(A) = ∫
A

j(∇uA , uA , x) dx.

Typically, this state equation is an elliptic PDE.
In recent years there has been an increasing amount of interest in nonlocal problems due to several inter-

esting applications that include some physical models [14, 15, 17, 23, 26, 36], finance [1, 24, 31], fluid
dynamics [10], ecology [20, 25, 30] and image processing [18].

However, there are only a handful of results of shape optimization problems of the form (1.1), where the
state equation involves a nonlocal operator instead of an elliptic PDE.

For instance, in [33], the authors extend the well-known Faber–Krahn inequality to the fractional case
and as a simple corollary, they solve problem (1.1) in the case when F(A) = λs1(A), where λ

s
1(A) is the first
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2 | J. Fernández Bonder et al., Optimization problems for nonlocal operators

eigenvalue of the Dirichlet fractional laplacian and the classA is the class of open sets of fixedmeasure. (See
the next section for precise definitions.)

In [4] the authors consider again the classAof open sets of fixedmeasure and F(A) = λs2(A) andprove that
problem (1.1) does not have a solution. In fact, a minimization sequence of domains consists of a sequence
of balls of the same measure where the distance of the centers diverges.

Finally, in [16], the authors take the class A of measurable sets of fixed measure contained in a fixed
open set Ω and the cost functional F(A) = λs1(Ω \ A), where in this case, λs1(Ω \ A) is the first eigenvalue of the
fractional laplacian with Dirichlet condition on A and Neumann condition inℝn \ Ω.

For other recent shapeoptimizationproblemswhere the state equation is nonlocal, see [8, 11, 21, 22, 29],
and references therein.

The purpose of this article is to consider a family of minimization problems of the form (1.1) for costs
functions F under some natural assumptions that includes the particular cases mentioned above. These nat-
ural assumptions are similar to those considered in [9] where the authors addressed this problem when the
state equation is given in terms of an elliptic PDE. Roughly speaking, these assumptions are:
∙ monotonicity with respect to the inclusion,
∙ lower semicontinuity with respect to a suitable defined notion of convergence of domains.

Observe that the results of [4] put a restriction on the classes of admissible domains that one needs to
consider if you want to obtain a positive result. This is mainly due to the fact that taking a domain with
two connected components and making these components go far away from each other makes the nonlocal
energy decrease. So, in the spirit of [9] we restrict ourselves to the class A of open sets of fixed measure that
are contained in a fixed box Q ⊂ ℝn.

Under these conditions, we are able to recover the results of [9] in the fractional setting and, moreover,
we analyze the transition from the fractional case to the classical elliptic PDE case proving convergence of
the minima and of the optimal shapes.

2 Setting of the problem

2.1 Some preliminaries and notation

Given s ∈ (0, 1) we consider the fractional laplacian, that for smooth functions u (C2 and bounded are
enough, see [13]) is defined as

(−∆)su(x) := c(n, s)p.v. ∫
ℝn

u(x) − u(y)
|x − y|n+2s

dy = −
c(n, s)
2 ∫
ℝn

u(x + z) − 2u(x) + u(x − z)
|z|n+2s

dz.

where

c(n, s) := (∫
ℝn

1 − cos ζ1
|ζ|n+2s

dζ)
−1

is a normalization constant. The constant c(n, s) is chosen in such a way that the following identity holds:

(−∆)su = F−1(|ξ|2sF(u)),

for u in the Schwarz class of rapidly decreasing and infinitely differentiable functions, where F denotes the
Fourier transform. See [13, Proposition 3.3].

The natural functional setting for this operator is the fractional Sobolev space Hs(ℝn) defined as

Hs(ℝn) := {u ∈ L2(ℝn) : u(x) − u(y)
|x − y| n2+s

∈ L2(ℝn × ℝn)}

= {u ∈ L2(ℝn) : ∫
ℝn

(1 + |ξ|2s)|F(u)(ξ)|2 dξ < ∞},
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which is a Banach space endowed with the norm ‖u‖2s := ‖u‖22 + [u]2s , where the term

[u]2s := ∬
ℝn×ℝn

|u(x) − u(y)|2

|x − y|n+2s
dx dy

is the so-called Gagliardo semi-norm of u.
Due to the nonlocal nature of the operator (−∆)s, when dealing with Dirichlet-type problems in a open

bounded set Ω ⊂ ℝn, it is necessary to contemplate the “boundary condition” not only on ∂Ω but in the
whole ℝn \ Ω. The natural space to work with is denoted as Hs0(Ω) and it is defined by the closure of C∞c (Ω)
in the norm ‖ ⋅ ‖s. When Ω is a Lipschitz domain, Hs0(Ω) coincides with the space of functions vanishing out-
side Ω, i.e.,

Hs0(Ω) = {u ∈ Hs(ℝn) : u = 0 inℝn \ Ω}.

Aimed at our purposes in this paper, it is suitable to analyze the behavior of the normalization constant
c(n, s) as s ↑ 1. In [35], E. Stein studied the relation between negative powers of the Laplace operator and
Riesz potentials. In this context it is proved that

lim
s↑1

c(n, s)
1 − s =

4n
ωn−1

,

where ωn−1 denotes the (n − 1)-dimensional measure of the unit sphere Sn−1. That choice of the constant is
consistent in order to recover the usual laplacian in the sense that

lim
s↑1

(−∆)su = −∆u for all u ∈ C∞c (ℝn). (2.1)

For a direct proof of these facts, we refer to the article [13].
Moreover, in [13, Remark 4.3] it is shown that

lim
s↑1

c(n, s)
2 [u]2s = ‖∇u‖22.

2.2 Statements of the main results

We begin with some definitions.

Definition 2.1. Let Ω ⊂ ℝn be an open set. Given A ⊂ Ω, for any 0 < s < 1, we define the Gagliardo s-capacity
of A relative to Ω as

caps(A, Ω) = inf{[u]2s : u ∈ C∞c (Ω), u ≥ 0, A ⊂ {u ≥ 1}∘}.

In this context, we say that a subset A of Ω is a s-quasi open set if there exists a decreasing sequence {ωk}k∈ℕ
of open subsets of Ω such that caps(ωk , Ω) → 0, as k → ∞, and A ∪ ωk is an open set for all k ∈ ℕ. We denote
byAs(Ω) the class of all s-quasi open subsets of Ω.

In the case s = 1 the definitions are completely analogous with ‖∇u‖2 instead of [u]2s .

Remark 2.2. From Hölder’s inequality is easy to see thatAs(Ω) ⊂ At(Ω) when 0 < t < s ≤ 1.

For further properties of the s-capacity we refer the reader, for instance, to [32].
Given A ∈ As(Ω), we denote by usA ∈ Hs0(A) the unique (weak) solution to

(−∆)susA = 1 in A, usA = 0 inℝn \ A.

Remark 2.3. Observe also that usA is the unique minimizer of

Is(u) :=
c(n, s)
2 [u]2s − ∫

A

u dx (2.2)

in Hs0(A).

With this notation, we define the following notion of set convergence.

Definition 2.4. Let {Ak}k∈ℕ ⊂ As(Ω) and A ∈ As(Ω). We say that Ak
γsÚ→ A if usAk → usA strongly in L2(Ω).
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Remark 2.5. This is the fractional version of the γ-convergence of sets defined in [9].

Now, take 0 < s < 1 be fixed and let Fs : As(Ω) → ℝ be such that
(Hs1) Fs is lower semicontinuous with respect to the γs-convergence; that is,

Ak
γsÚ→ A implies Fs(A) ≤ lim inf

k→∞
Fs(Ak).

(Hs2) Fs is decreasing with respect to set inclusion; that is Fs(A) ≥ Fs(B) whenever A ⊂ B.
So, the problem that we address in this paper is the following:

min{Fs(A) : A ∈ As(Ω), |A| ≤ c}, (2.3)

where Fs satisfies (Hs1)–(H
s
2).

Remark 2.6. Observe that from the monotonicity assumption (Hs2) on Fs, this problem is equivalent to mini-
mize in the class of s-quasi open sets A of measure |A| = c. In fact, assume that a minimizer A0 ∈ As for (2.3)
verifies that |A0| < c. Then, for any Ã0 ⊃ A0 such that |Ã0| = c, we have

Fs(Ã0) ≤ Fs(A0) = inf
A∈As

Fs(A)

and so Ã0 is a minimizer of Fs.

Following the same approach and ideas of [9], problem (2.3) can be analyzed and that is the content of our
first result.

Theorem 2.7. Let 0 < s < 1 be fixed and let Ω ⊂ ℝn be open and bounded. Let Fs : As(Ω) → ℝ be such that
(Hs1) and (H

s
2) are satisfied. Then, for every 0 < c < |Ω|, problem (2.3) has a solution.

As we mentioned, the proof of Theorem 2.7 follows the ideas developed in [9] and that is carried out in Sec-
tion 3.

Next, we want to analyze the behavior of these minimum problems and its minimizers when s ↑ 1. In
order to perform such an analysis we need to assume some asymptotic behavior on the cost functionals Fs.
In order to do this, we need to define a notion of convergence for sets when s varies.

Definition 2.8. Let 0 < sk ↑ 1 and let Ak ∈ Ask (Ω) and A ∈ A1(Ω). We say that Ak
γ
Ú→ A if uskAk → u1A strongly

in L2(Ω).

Remark 2.9. Observe that the notion of γ-convergence of sets given in [9] is denoted in this paper by
γ1-convergence. This should not cause any confusion.

Now we can give the assumptions of the functionals Fs:
(H1) Continuity with respect to A: if A ∈ A1(Ω), then

F1(A) = lim
s↑1

Fs(A).

(H2) Liminf inequality: for every 0 < sk ↑ 1 and Ak
γ
Ú→ A, then

F1(A) ≤ lim inf
k→∞

Fsk (Ak),

Under these assumptions, we obtain the following result.

Theorem 2.10. For any 0 < s ≤ 1, let Fs : As(Ω) → ℝ be such that (Hs1) and (H
s
2) are satisfied. Assume more-

over that (H1) and (H2) are satisfied. Then

min{F1(A) : A ∈ A1(Ω), |A| ≤ c} = lim
s↑1

min{Fs(A) : A ∈ As(Ω), |A| ≤ c}

and, moreover, if As ∈ As(Ω) is aminimizer for (2.3), then there exists a sequence 0 < sk ↑ 1, sets Ãsk ⊃ Ask and
a set A1 ∈ A1(Ω) such that Ãsk

γ
Ú→ A1 and A1 is a minimizer for (2.3) with s = 1.

The proof of Theorem 2.10 is carried out in Section 4 and also uses ideas developed in [9]. However, in this
case nontrivial modifications need to be made in order to consider the varying spaces where one is working.
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2.3 Examples

Let first establish some notations. Given a bounded domain A ∈ As(Ω), consider the problem

(−∆)su = λsu in A, u ∈ Hs0(A), (2.4)

where λs ∈ ℝ is the eigenvalue parameter. It is well known that there exists a discrete sequence {λsk(A)}k∈ℕ of
positive eigenvalues of (2.4) approaching +∞ whose corresponding eigenfunctions {usk}k∈ℕ form an ortho-
gonal basis in L2(A). These fact followsdirectly from the spectral theorem for compact and self adjoints opera-
tors, see [6]. Moreover, the following variational characterization holds for the eigenvalues:

λsk(A) = min
u⊥Wk−1 c(n, s)2

[u]2s
‖u‖22

,

whereWk is the space spanned by the first k eigenfunctions us1, . . . , u
s
k.

Functions Fs satisfying hypothesis (Hs1) and (H
s
2) include a large family of examples. For instance, if we

consider the application A Ü→ λsk(A), Theorem 2.7 claims that for every k ∈ ℕ and 0 < c < |Ω|, the minimum

min{λsk(A) : A ∈ As(Ω), |A| ≤ c}

is achieved. More generally, the minimum

min{Φs(λsk1 (A), . . . , λ
s
kN (A)) : A ∈ As(Ω), |A| ≤ c}

is achieved, where Φs : ℝN → ℝ̄ is lower semicontinuous and increasing in each coordinate.
Moreover, if Φs(t1, . . . , tN) → Φ1(t1, . . . , tN) for every (t1, . . . , tN) ∈ ℝN and

Φ1(t1, . . . , tN) ≤ lim inf
k→∞

Φsk (tk1, . . . , t
k
N),

for every (tk1, . . . , t
k
N) → (t1, . . . , tN), then Theorem 2.10 together with the result of [5] imply that

min{Φ1(λk1 (A), . . . , λkN (A)) : A ∈ A1(Ω), |A| ≤ c} = lim
s↑1

min{Φs(λsk1 (A), . . . , λ
s
kN (A)) : A ∈ As(Ω), |A| ≤ c}.

3 Proof of Theorem 2.7
This section is devoted to proving Theorem 2.7. The arguments follow essentially the lines of [9] with some
modifications for the nonlocal setting.

The sketch of the argument is as follows: Given A ∈ As(Ω), we first prove that usA is the solution to

max{w ∈ Hs0(Ω) : w ≤ 0 inℝn \ A, (−∆)sw ≤ 1 in Ω}. (3.1)

Moreover, as a consequence of Lemma 3.2 below, usA belongs to the convex closed setKs defined as

Ks = {w ∈ Hs0(Ω) : w ≥ 0, (−∆)sw ≤ 1 in Ω}. (3.2)

It will be convenient to also considerK1 defined as in (3.2) with s = 1, where (−∆)1 = −∆.
Finally, one defines a functional Gs onKs satisfying that

(G1) Gs is decreasing onKs,
(G2) Gs is lower semicontinuous onKs with respect to the strong topology on L2(Ω),
(G3) Gs(usA) = Fs(A) for every A ∈ As(Ω),
to conclude that the problem

min{Gs(w) : w ∈ Ks , |{w > 0}| ≤ c} (3.3)

has a solution w0. If we denote A0 = {w0 > 0}, then usA0
is also aminimum point of Gs over the wholeKs sub-

ject to the condition |{w > 0}| ≤ c and hence, A0 is aminimizer for Fs inAs(Ω) subject to the condition |A| ≤ c.
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6 | J. Fernández Bonder et al., Optimization problems for nonlocal operators

We start by proving (3.1). Let us define

KA = {w ∈ Hs0(Ω) : w ≤ 0 inℝn \ A},

and wA ∈ KA the (unique) minimizer of

Is : KA → ℝ, Is(w) =
c(n, s)
2 [w]2s − ∫

Ω

w dx.

Observe that, by Stampacchia’s theorem, wA is characterized by the variational inequality

E(wA , v − wA) ≥ ∫
Ω

(v − wA) dx for all v ∈ KA , (3.4)

where we denote
E(u, v) := c(n, s) ∬

ℝn×ℝn

(u(x) − u(y))(v(x) − v(y))
|x − y|n+2s

dx dy. (3.5)

Next, we prove that both functions usA and wA agree.

Lemma 3.1. With the previous notation we have that wA = usA.

Proof. The proof is standard. We will use the standard notations of w+ = max{w, 0} and w− = max{−w, 0}.
Take w+A as test function in the variational inequality (3.4) and obtain

0 ≤ ∫
Ω

w−A dx ≤ E(wA , w−A) ≤ −c(n, s) ∬
{wA≤0}×{wA≤0}

(w−A(x) − w
−
A(y))

2

|x − y|n+2s
dx dy.

From this inequality one easily conclude thatw−A = 0 and so, sincewA ∈ KA,wA ∈ Hs0(A). Therefore, since, by
Remark 2.3, usA is the unique minimum of Is over Hs0(A) and, since also u

s
A ∈ KA, Is(wA) ≤ Is(usA) the lemma

follows.

Using the previous lemma, we prove the following properties on usA.

Lemma 3.2. With the above notations, usA ≥ 0 on Ω. Moreover, usA is the solution to (3.1).

Proof. First observe that from the maximum principle it follows that usA ≥ 0 in Ω. Given v ∈ Hs0(Ω) such that
v ≥ 0, we have that −v ∈ KA. Using it as a test function in (3.4), we obtain that

E(usA , −v − u
s
A) = −c(n, s)[usA]

2
s − E(usA , v) ≥ −∫

Ω

v dx − ∫
Ω

usA dx.

Using that (−∆)susA = 1 in A, the last inequality reads as

E(usA , v) ≤ ∫
Ω

v dx.

Since v ∈ Hs0(Ω) is nonnegative but otherwise arbitrary,weget that (−∆)su
s
A ≤ 1 inΩ. Finally, ifw ≤ 0 inℝn \ A

and (−∆)sw ≤ 1 in Ω, then

(−∆)sw ≤ (−∆)susA in A and w ≤ usA inℝn \ A.

Hence, by comparison, w ≤ usA inℝn.

The setKs satisfies the following properties:

Proposition 3.3. The setKs is a convex, closed and bounded subset of Hs0(Ω).

Proof. Clearly, Ks is a convex set. It is also bounded. Indeed, given u ∈ Ks, by Hölder’s and Poincaré’s in-
equalities we get

c(n, s)[u]2s ≤ ∫
Ω

u dx ≤ |Ω|
1
2 ‖u‖L2(Ω) ≤ C|Ω|

1
2 [u]s .
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In order to see that Ks is closed, let {uk}k∈ℕ be a sequence in Ks such that uk → u in Hs0(Ω). For any k ∈ ℕ
and any v ∈ Hs0(Ω), v ≥ 0, it holds that

E(uk , v) ≤ ∫
Ω

v dx.

Since E( ⋅ , v) is continuous in Hs0(Ω) (in fact is weakly continuous), taking the limit as k → ∞we obtain that
E(u, v) ≤ ∫Ω v dx, but, since v ∈ H

s
0(Ω) is nonnegative but otherwise arbitrary, we obtain that (−∆)su ≤ 1 in Ω

and then u ∈ Ks.

Remark 3.4. Observe that optimal constant in Poincaré’s inequality

‖u‖2L2(Ω) ≤ C(Ω, s)[u]
2
s ,

has a dependence on s of the form
C(Ω, s) ≤ (1 − s)C(Ω).

See [5]. Therefore, the proof of Proposition 3.3 gives that if u ∈ Ks, then

(1 − s)[u]2s ≤ C, (3.6)

where C depends on Ω but is independent on 0 < s < 1.

Now, in order to prove the existence of solution to (2.3) we define a functional Gs on Ks satisfying condi-
tions (G1)–(G3). We will use the notation, for 0 < s ≤ 1,

Ac
s(Ω) := {A ∈ As(Ω) : |A| ≤ c}. (3.7)

For any 0 < s ≤ 1, given w ∈ Ks we define

Js(w) = inf{Fs(A) : A ∈ Ac
s(Ω), usA ≤ w}.

This functional Js is not lower semicontinuous in general. So we define Gs to be the lower semicontinuous
envelope of Js inKs with respect to the strong topology in L2(Ω), i.e.,

Gs(w) = inf{lim inf
k→∞

Js(wk)}, (3.8)

where the infimum is taken over all sequences {wk}k∈ℕ inKs such that wk → w in L2(Ω).
Observe that Gs automatically verifies (G2).

Proposition 3.5. Let 0 < s ≤ 1. The functional Gs satisfies conditions (G1).

Proof. The case s = 1 is considered in [9], so we take 0 < s < 1.
Let us begin by noticing that if u, v ∈ Ks, then max{u, v} ∈ Ks. In fact, let us denote w = max{u, v} and

consider the convex set
E = {z ∈ Hs0(Ω) : z ≤ w in Ω}.

By Stampacchia’s theorem there exists a unique function z0 ∈ E such that

Is(z0) = min
E
Is ,

where Is is defined in (2.2). In addition, z0 satisfies that

E(z0, z − z0) ≥ ∫
Ω

(z − z0) dx for all z ∈ E, (3.9)

where E is defined in (3.5).
Let us see that (−∆)sz0 ≤ 1. Given φ ∈ Hs0(Ω) such that φ ≤ 0, we define the functional

i(t) = Is(z0 + tφ) for all t ≥ 0.

Observe that i�(0) ≥ 0. In consequence, for any nonpositive φ ∈ Hs0(Ω) it holds that E(z0, φ) ≥ ∫Ω φ dx, and
then E(z, φ) ≤ ∫Ω φ dx for any φ ∈ Hs0(Ω), φ ≥ 0 and the claim follows.
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8 | J. Fernández Bonder et al., Optimization problems for nonlocal operators

Now, we will prove that z0 ≥ u (and for symmetry reasons that z0 ≥ v), from where it will follow that
z0 ≥ w. Since z0 ∈ E, the reverse inequality holds and we can conclude that z0 = w ∈ Ks.

Let η = max{z0, u} and let us see that z0 = η. Observe that η ∈ E and thus it can be consider as a test
function in (3.9). Thus,

E(z0, η − z0) ≥ ∫
Ω

(η − z0) dx.

On the other hand, since η − z0 ≥ 0 and (−∆)su ≤ 1 in Ω, it follows that

E(u, η − z0) ≤ ∫
Ω

(η − z0) dx.

From both inequalities it is straightforward to see that

0 ≤ E(z0 − u, η − z0) ≤ −c(n, s)[(u − z0)+]2s

and then (u − z0)+ = 0 inℝn, which implies that z0 ≥ u inℝn, as we required.
Now we proceed with the proof. Let u, v ∈ Ks be such that u ≤ v and let {uk}k∈ℕ ⊂ Ks be such that

uk → u in L2(Ω) and Js(uk) → Gs(u). By our previous claim, we have vk = max{v, uk} ∈ Ks for each k ∈ ℕ
and vk → v = max{v, u} in L2(Ω). Consequently, since Js is nonincreasing and vk ≥ uk for any k ∈ ℕ, we get

Gs(v) ≤ lim inf
k→∞

Js(vk) ≤ lim
k→∞

Js(uk) = Gs(u),

as we wanted to show.

We will need the following lemma in order to prove condition (G3). We omit the proof since it is completely
analogous to that of [9, Lemmas 3.2 and 3.3] where the case s = 1 was considered.

Lemma 3.6. Let 0 < s < 1. Let {Ak}k∈ℕ ⊂ As(Ω) be a sequence such that usAk → u in L2(Ω), with u ≤ usA. We
define Aε = {usA > ε}. Then, if usAk∪Aε → uε in L2(Ω), it holds that uε ≤ usA.

With the help of Lemma 3.6 we are able to show that Gs satisfies condition (G3).

Proposition 3.7. Let 0 < s ≤ 1. Then the functional Gs satisfies (G3).

Proof. We only need to consider 0 < s < 1. Let us fix A ∈ Ac
s(Ω). From (3.8) it follows that Gs(usA) ≤ Fs(A). To

prove the reverse inequality, it suffices to see that

Fs(A) ≤ lim inf
k→∞

Js(wk)

for any sequence {wk}k∈ℕ ⊂ Ks such that wk → usA in L2(Ω). By the definition of Js, there exists Ak ∈ Ac
s(Ω)

such that

Fs(Ak) ≤ Js(wk) +
1
k and usAk ≤ wk .

Observe that usAk ∈ Ks for each k ∈ ℕ and by Proposition 3.3, {usAk }k∈ℕ is bounded in Hs0(Ω). Then, up to
a subsequence, there exists u ∈ Ks such that usAk → u in L2(Ω). Since wk → usA in L2(Ω), from usAk ≤ wk we
get u ≤ usA.

Let us consider the set Aε = {usA > ε} and observe that usAk∪Aε ∈ Ks. Again by Proposition 3.3, it follows
that and usAk∪Aε → uε in L2(Ω) for some uε ∈ Ks. By Lemma 3.6, the inequality uε ≤ usA follows.

We claim that (usA − ε)+ ≤ usAε . Indeed,

(usA − ε)+(x) − (usA − ε)+(y) =

{{{{{{
{{{{{{
{

usA(x) − u
s
A(y) if x, y ∈ Aε ,

usA(x) − ε if x ∈ Aε and y ̸∈ Aε ,
−usA(y) + ε if x ̸∈ Aε and y ∈ Aε ,
0 otherwise.
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Then, for any v ∈ Hs0(Aε) such that v ≥ 0, we get

∬
ℝn×ℝn

((usA(x) − ε)
+ − ((usA(y) − ε)

+)(v(x) − v(y))
|x − y|n+2s

dx dy

= ∬
Aε×Aε

(usA(x) − u
s
A(y))(v(x) − v(y))

|x − y|n+2s
dx dy + 2 ∬

Aε×(Aε)c

(usA(x) − ε)v(x)
|x − y|n+2s

dy dx

= ∬
ℝn×ℝn

(usA(x) − u
s
A(y))(v(x) − v(y))

|x − y|n+2s
dx dy + 2 ∬

Aε×(Aε)c

(usA(y) − ε)v(x)
|x − y|n+2s

dy dx

≤ ∬
ℝn×ℝn

(usA(x) − u
s
A(y))(v(x) − v(y))

|x − y|n+2s
dx dy.

That is, (−∆)s(usA − ε)+ ≤ (−∆)susA = 1 = (−∆s)usAε in Aε. Moreover, since 0 = (usA − ε)+ = usAε in ℝn \ Aε, from
the comparison principle it follows that (usA − ε)+ ≤ usAε inℝn.

We have obtained the following chain of inequalities:

(usA − ε)+ ≤ usAε ≤ u
s
Ak∪Aε .

Taking limit as k → ∞, we conclude that

(usA − ε)+ ≤ uε ≤ usA ,

since uε ≤ usA and u
s
Ak∪Aε → uε. Since uε ∈ Ks, by (3.6), {uε}ε>0 is uniformly bounded inHs0(Ω). Consequently,

up to a subsequence, uε → usA ∈ L2(Ω). By a standard diagonal argument, there exists a sequence {εk}k∈ℕ
such that usAk∪Aεk → usA in L2(Ω).

In conclusion, we have proved that (Ak ∪ Aεk ) γs-converges to A. Therefore

Fs(A) ≤ lim inf
k→∞

Fs(Ak ∪ Aεk ) ≤ lim inf
k→∞

Fs(Ak) ≤ lim inf
k→∞

Js(wk).

This fact concludes the proof of the proposition.

Having proved these preliminary results, the proof of Theorem 2.7 follows in the same way of that of
[9, Theorem 2.5]. We include the details for the reader convenience.

Proof of Theorem 2.7. First, we solve (3.3). Take {wk}k∈ℕ ⊂ Ks such that |{wk > 0}| ≤ c and

lim
k→∞

Gs(wk) = inf{Gs(w) : w ∈ Ks , |{w > 0}| ≤ c} =: mGs .

By Proposition 3.3, there exists w0 ∈ Ks such that wk → w0 strongly in L2(Ω), up to a subsequence. Thus,
|{w0 > 0}| ≤ c. Then, by (G2),

mGs ≤ Gs(w0) ≤ lim inf
k→∞

Gs(wk) = mGs .

So, w0 is a solution to (3.3).
Now, consider A0 := {w0 > 0}. Then A0 ∈ Ac

s(Ω). By Lemma 3.2, w0 ≤ usA0
. For every A ∈ Ac

s(Ω), we know
that usA ∈ Ks, |{usA > 0}| ≤ c. Then, by (G3), (G1) and the fact that w0 is the solution to (3.3), we have

Fs(A0) = Gs(usA0
) ≤ Gs(w0) ≤ Gs(usA) = Fs(A).

Therefore, A0 is a solution to (2.3).

4 Proof of Theorem 2.10
In this section we prove Theorem 2.10 following the same spirit of [9]; however, nontrivial changes must be
performed due to the nonlocal settings.

Our first goal is to show that a sequence {uk}k∈ℕ ⊂ L2(Ω) such that uk ∈ Ksk is precompact and that every
accumulation point belongs toK1. This is the content of the next lemma.
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Lemma 4.1. Let 0 < sk ↑ 1 and let uk ∈ Ksk . Then there exist u ∈ H1
0(Ω) and a subsequence {ukj }j∈ℕ ⊂ {uk}k∈ℕ

such that ukj → u strongly in L2(Ω). Moreover, if uk ∈ Ksk is such that uk → u strongly in L2(Ω), then u ∈ K1.

Proof. From Remark 3.4, there exists a constant C > 0 such that

sup
k∈ℕ

(1 − sk)[uk]2sk ≤ C.

Now the first claim follows from [3, Theorem 4].
Assume that uk → u in L2(Ω). It is clear that u ≥ 0. Since (−∆)skuk ≤ 1 in Ω, for every nonnegative

φ ∈ C∞c (Ω) we have that
∫
Ω

(−∆)skφuk dx = ⟨(−∆)skuk , φ⟩ ≤ ∫
Ω

φ dx.

By the convergence assumption on uk and the fact that the convergence (2.1) is also strong in L2(Ω), we can
take limit as k → ∞ in the previous inequality to obtain that

∫
Ω

−∆φu dx = ⟨−∆u, φ⟩ ≤ ∫
Ω

φ dx,

and conclude that −∆u ≤ 1 in Ω. Consequently, u ∈ K1 as required.

Analogously as in the previous section, we define the following functionals for the limit problem:

J1(w) := inf{F1(A) : A ∈ Ac
1(Ω), uA ≤ w},

where Ac
1(Ω) is defined in (3.7) for s = 1 and we define G1 to be the lower semicontinuous envelope of J1

inK1.
The next lemma gives the continuity of usA when s ↑ 1.

Lemma 4.2. For every A ∈ A1(Ω), usA → uA strongly in L2(Ω), when s ↑ 1.

Proof. Let us remind that, from Lemma 3.1, usA is also the solution to the minimization problem

Is(usA) = min{Is(w) : w ∈ L2(Ω)},

where

Is(w) =
{{{
{{{
{

c(n, s)
2 [w]2s − ∫

Ω

w dx if w ∈ Hs0(A),

∞ otherwise.
Notice that, by [28], we have c(n,s)

2 [w]2s
Γ
Ú→ 1

2 ‖∇w‖
2
2. Since the Γ-convergence is stable under continuous per-

turbations, we have Is
Γ
Ú→ I1 in L2(Ω), where

I1(w) =
{{{
{{{
{

1
2 ‖∇w‖

2
2 − ∫

Ω

w dx if w ∈ H1
0(A),

∞ otherwise.

Thus, the minimizer of Is converges to the minimizer of I1. That is usA → uA strongly in L2(Ω).

Nowwe address the more difficult problem of understanding the limit behavior of usA when the domains also
are varying with s.

This first lemma is key in understanding this limit behavior and the ideas are taken from [9].

Lemma 4.3. Let 0 < sk ↑ 1 and for every k ∈ ℕ let Ak ∈ Ask (Ω) be such that uskAk → u strongly in L2(Ω). Let
{wk}k∈ℕ ⊂ L2(Ω) be such that wk ∈ Hsk0 (Ak) for every k ∈ ℕ and supk∈ℕ(1 − sk)[wk]2sk < ∞. Assume, moreover,
that wk → w strongly in L2(Ω). Then w ∈ H1

0({u > 0}).

Proof. We need to show that w = 0 inℝn \ {u > 0}, i.e., w = 0 in {u = 0}.
Let us define the functional

Φk(v) =
{
{
{

c(n, sk)
2 [v]2sk if v ∈ Hsk0 (Ak),

∞ otherwise,
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defined in L2(Ω). By the compactness of Γ-convergence, there exists a subsequence still denote by Φk such
that

Φk
Γ
Ú→ Φ in L2(Ω).

From [12, Theorem11.10], Φ is a quadratic form in L2(Ω)with domainD(Φ) ⊂ L2(Ω). Observe thatw ∈ D(Φ),
since

Φ(w) ≤ lim inf
k→+∞

Φk(wk) ≤ sup
k∈ℕ

c(n, sk)
2 [wk]2sk ≤ C sup

k∈ℕ
(1 − sk)[wk]2sk < ∞.

Let B : D(Φ) × D(Φ) → ℝ be the bilinear form associated to Φ, which is defined by

B(v, η) = 1
4 (Φ(v + η) − Φ(v − η)).

Let us denote by V the closure of D(Φ) in L2(Ω) and consider the linear operator T : D(T) ⊂ L2(Ω) → L2(Ω)
defined as Tv = f , where

D(T) = {v ∈ D(Φ) : there exists f ∈ V such that B(v, η) = ∫
Ω

fη dx for all η ∈ D(Φ)}.

By [12, Proposition 12.17], D(T) is dense in D(Φ) with respect to the norm

‖v‖Φ = (‖v‖L2(Ω) + Φ(v))
1
2 .

Moreover, the following relation holds:
√2‖ ⋅ ‖Φ ≥ ‖ ⋅ ‖H1

0(Ω). (4.1)

Indeed, if z ∈ D(Φ), as Φk
Γ
Ú→ Φ in L2(Ω), there exists {zk}k∈ℕ such that zk → z in L2(Ω) and

∞ > Φ(z) = lim
k→∞

Φk(zk) =
{{
{{
{

lim
k→∞

c(n, sk)
2 [zk]2sk if zk ∈ Hsk0 (Ak),

∞ otherwise.

Thus, zk ∈ Hsk0 (Ak) and then

‖z‖2H1
0(Ω)

≤ lim inf
k→∞

c(n, sk)[zk]2sk = 2 lim
k→∞

Φk(zk) = 2Φ(z) ≤ 2‖z‖2Φ .

Since (4.1) holds, D(T) is dense in D(Φ) with respect to the strong topology of H1
0(Ω). Now to achieve the

proof it is enough to prove that v = 0 in {u = 0} for all v ∈ D(T).
Let v ∈ D(T) and let f ∈ Tv; then v is a minimum point of the functional

Ψ(η) = 1
2Φ(η) − ∫

Ω

fη dx

(see [12, Proposition 12.12]). Let vk be the minimum point of functional

Ψk(η) :=
1
2Φk(η) − ∫

Ω

fη dx;

then vk is the solution of the problem

(−∆)sk vk = f, v ∈ Hsk0 (Ak).

Since Φk
Γ
Ú→ Φ, it follows that Ψk

Γ
Ú→ Ψ and so we have that vk → v strongly in L2(Ω).

For ε > 0 we consider f ε to be a bounded function with compact support such that ‖f ε − f‖2 < ε and vεk is
a solution of

(−∆)sk vεk = f
ε in Ak , vεk ∈ H

sk
0 (Ak).

By using the linearity of the operator together with Hölder’s and Poincaré’s inequalities, we get

c(n, sk)
2 [vεk − vk]

2
sk = ∫

Ω

(f ε − f)(vεk − vk) dx ≤ ‖fε − f‖2‖vεk − vk‖2.
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From Poincaré’s inequality we obtain that

(1 − sk)[vεk − vk]
2
sk ≤ Cε

2,

where C is independent on k. Then from [3, Theorem 4], up to a subsequence, vεk → vε strongly in L2(Ω) and
‖vε − v‖H1

0(Ω) ≤ Cε. At this point it is enough to prove that v
ε = 0 in {u = 0} for all ε > 0.

Since f ε ≤ cε := ‖f ε‖∞ and

(−∆)sk vεk = f
ε ≤ cε = (−∆)sk (cεuskAk ) in Ak , vεk = c

εuskAk = 0 inℝn \ Ak ,

the comparison principle gives that vεk ≤ c
εuskAk . Analogously, −v

ε
k ≤ c

εuskAk .
As k → ∞, we obtain that |vε| ≤ cεu, which implies that vε = 0 in {u = 0} for any ε > 0 and that completes

the proof.

The next lemma is the counterpart of Lemma 3.6 of the previous section. We include here the details for
completeness. The main modifications with respect to the previous proof (which was analogous to that
of [9, Lemmas 3.2 and 3.3]) were carried out in the previous lemmas of this section.

Lemma 4.4. Let 0 < sk ↑ 1 and for every k ∈ ℕ, let Ak ∈ Ask (Ω), A ∈ A1(Ω). Assume that uskAk → u in L2(Ω) and
that u ≤ uA. Then, if uskAk∪Aε → uε strongly in L2(Ω), where Aε := {uA > ε}, it holds that uε ≤ uA.

Proof. By Lemma 3.2 with s = 1, the inequality uε ≤ uA will follow if we prove that uε ∈ H1
0(Ω), uε ≤ 0 in

ℝn \ A and −∆uε ≤ 1 in Ω.
Observe that by Lemma 4.1 we have that u, uε ∈ H1

0(Ω). Let us define

vε := 1 −
1
ε min{uA , ε} =

1
ε (ε − uA)

+

and observe that 0 ≤ vε ≤ 1 and vε = 0 in Aε since 0 ≤ min{uA , ε} ≤ ε and 1
ε min{uA , ε} = 1 in Aε. If we define

uk,ε := uskAk∪Aε , wk,ε := min{vε , uk,ε},

it holds that wk,ε ≥ 0 since the comparison principle gives uk,ε ≥ 0, and also vε ≥ 0. Since vε = 0 in Aε, it fol-
lows that wk,ε = 0 in Aε. Moreover, since uk,ε = 0 in ℝn \ (Ak ∪ Aε), it holds that wk,ε = 0 in ℝn \ (Ak ∪ Aε),
and consequently,wk,ε ∈ Hsk0 (Ak). Notice thatwk,ε → wε := min{vε , uε} strongly in L2(Ω), and then, applying
Lemma 4.3, we get wε ∈ H1

0({u > 0}), fromwhere wε = 0 in {u = 0}. The relation 0 ≤ u ≤ uA implies the inclu-
sion {uA = 0} ⊂ {u = 0}, from where wε ∈ H1

0({uA > 0}). Moreover, since {uA > 0} ⊂ A, we have that wε = 0
inℝn \ A. Now, being vε = 1 inℝn \ A, we get uε = 0 inℝn \ A, and in particular, uε ≤ 0 inℝn \ A.

Finally, it remains to see that −∆uε ≤ 1 in Ω. Observe that uk,ε ∈ Ksk and uk,ε → uε strongly in L2(Ω).
Then uε ∈ K1 by Lemma 4.1. Thus −∆uε ≤ 1 in Ω and the proof is complete.

With the help of these lemmas, we are now in a position to prove the main tool needed in the proof of Theo-
rem 2.10.

Proposition 4.5. Let 0 < sk ↑ 1, and let Ak ∈ Ac
sk (Ω) be such that u

sk
Ak → u strongly in L2(Ω). Then there exist

Ãk ∈ Ask (Ω) such that Ak ⊂ Ãk and Ãk γ-converges to A := {u > 0}.

Proof. Since uskAk ∈ Ksk and u
sk
Ak → u, by Lemma 4.1, u ∈ K1. Then, by Lemma 3.2, u ≤ uA. As in the previous

proof, consider Aε := {uA > ε} and observe that

uskAε ≤ u
sk
Ak∪Aε

Since uskAk∪Aε ∈ Ksk , by Lemma 4.1, there exists uε ∈ H1
0(Ω) such that uskAk∪Aε → uε strongly in L2(Ω), up to

a subsequence. Also, by Lemma 4.2, uskAε → uAε strongly in L2(Ω). Then we can pass to the limit as k → ∞ in
the previous inequality to conclude that

uAε ≤ uε .

It can be easily checked that uAε = (uA − ε)+. Moreover, from Lemma 4.4,

(uA − ε)+ ≤ uε ≤ uA .
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Thus, there exists a sequence 0 < εk ↓ 0 such that

uskAk∪Aεk → uA strongly in L2(Ω).

That is, Ak ∪ Aεk =: ̃Ak γ-converges to A.

Now we are ready to prove the main result.

Proof of Theorem 2.10. By Theorem 2.7, there exists Ak ∈ Ac
sk (Ω) such that

Fsk (Ak) = min{Fsk (A) : A ∈ Ac
sk (Ω)}.

Then, if A ∈ Ac
1(Ω), by condition (H1) we know that

lim sup
k→∞

Fsk (Ak) ≤ lim
k→∞

Fsk (A) = F1(A),

from where it follows that

lim sup
k→∞

min{Fsk (A) : A ∈ Ac
sk (Ω)} ≤ min{F1(A) : A ∈ Ac

1(Ω)}. (4.2)

Let us see the reverse inequality. By simplicity, let us denote uk := uskAk ∈ Ksk . By Lemma 4.1, there is
u ∈ H1

0(Ω) such that, up to a subsequence, uk → u strongly in L2(Ω). Moreover, by Proposition 4.5, there
exists ̃Ak ∈ Ask (Ω) such that Ak ⊂ Ãk and Ãk γ-converges to A := {u > 0}. Since uk → u in L2(Ω), we have
|A| ≤ c. Finally, from conditions (H2) and (Hs2) we conclude that

F1(A) ≤ lim inf
k→∞

Fsk (Ãk) ≤ lim inf
k→∞

Fsk (Ak),

from where it follows that

min{F1(A) : A ∈ Ac
1(Ω)} ≤ lim inf

k→∞
min{Fsk (A) : A ∈ Ac

sk (Ω)}. (4.3)

Putting together (4.2) and (4.3) the result follows.
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